Load supporting element in any structure that is installed in horizontal direction and take load perpendicular to its length is called a beam.
Based on the way it is installed in structure, beam can be classified in to four main types.
First simply supported beam which have supports at its both ends, second is overhanging beam which have length extended over its supports, third is overhanging beam which have more than two supports and fourth is cantilever beam which fixed only at one end and other end is free.
There are three basic types of supports available for beams which includes fixed ends support, pined connection support and roller end support. From these three types any two types can be used to support single beam.
When load is applied on beam, its produce bending moment in beam by apply shear force across its cross section area. Beam reacts against this bending moment and shear force according to its moment of inertia.
Moment of inertia of beam is its shape dependent property which shows the beam ability to resist bending moment applied on it. Another factor which help beam to resist bending is modulus of elasticity of beam.
It’s the material related property of beam which defines the strain produce when a certain load is applied on it. Moment of inertia of beam and modulus of elasticity of beam material when combine define the beam reaction against the bending moment due to applied load.
Another factor which affects the working of beam is its length. Greater the length of beam greater will be the bending moment produce due to external load.
1. Selection one material from the four different material available and after that select the shape on which experiment will be conducted
2. Note down the materials Modulus of elasticity and moment of inertia of the selected shape
3. Select the number of weights and magnitude of each weight.
4. Fix the position of application of load
5. Use all the above information to find the reaction of beam theoretically
6. Use the information available to form the moment equation of beam
7. Use the moment equation of beam in Macaulay theory to drive the equation of slope and deflection
8. Use Equation of deflection to find the deflection of beam due to load at certain positions
9. Place the selected beam on apparatus and attach weight hanger and deflection measuring instrument
10. Apply load on beam by placing weight on hangers
11. Note the deflection of beam on selected points
12. Compare the theoretical and experimental results
13. Repeat the procedure for four different beams